

RMIO Modbus – $4 \times AI$ (voltage, current, resistance), $2 \times AO$, $5 \times$ relay outputs, $2 \times SSR$ outputs

- bit address = 16 * (word address -1) +1
- Supported Modbus functions F01, F03, F15, F16

name	address	type (def)	description	note
module ID	1 LSB 1 MSB	R	Module identification	Module ID: 8102hex
firmware MSB	2 LSB 2 MSB	R	Firmware version	FW version (in dec) corresponds with version of this document; for example: FW 13h (19 dec) = document V 01900 first three digits: FW version, remaining two digits: document revision
status LSB	3 LSB	R, W RAM	module status lower byte bit 0 – enable EEPROM write bit 1 – SW reset enable bit 2 – central write disable (all RW registers) bit 4 – enable EEPROM init bit 5 – calibration offset bit 6 – span calibation bit 7 – calibration enable	EEPROM init is enabled when the INIT switch was ON at power-up, and switched OFF before bit 4 was set to 1 (indicated by bit 2 in status MSB) SW reset enables device restart (see register 1002) Calibration is enabled when the INIT switch was ON at power-up, and switched OFF before bit 7 was set to 1 (indicated by bit 3 in status MSB) Calibration offset is executed by writing a zero value in bit 7 (before that bit 7 must be set to 1) and by writing a 1 to bit 5 Span calibration is executed by writing a zero value in bit 7 (before that bit 7 must be set to 1) and by writing a 1 to bit 5

RMIO – universal I/O module 4 × AI, 2 × AO, 5 × relay output, 2 × SSR output

Release 18.1.2023 ver. 105

				be set to 1) and by writing a 1 to bit 6
status MSB	3 MSB	R, RAM	module status upper byte bit 0 - 0 normal mode - 1 init mode bit 1 - 1 at the next write attempt received data will be written to EEPROM - 0 at the next write attempt received data will be written to RAM only bit 2 - EEPROM init bit 3 - 1-calibration enabled bit 4 - central write disable indication bit 5 - SW reset enable bit 6 - failed to read data from EEPROM, during next calibration all data will be written in EEPROM bit 7 -1	
address	4 LSB	R, W EEPROM (1)	module address	III The changes will become active only after module restart (the register is written immediately, but the new address is effective after restart)
baud rate (comm speed)	4 MSB	R, W EEPROM (13)	10dec 1 200bps 11dec 2 400bps 12dec 4 800bps 13dec 9 600bps 14dec 19 200bps 15dec 38 400bps 16dec 57 600bps 17dec 115 200bps	!!! The changes will become active only after module restart (the register is written immediately, but the new baud rate is effective after restart)
input range, channels 1, 2	5 LSB	R, W EEPROM (0x12)	 1Pt1000 (-50 to 150 °C) (-5000 to 15000), divide by 100 to get the correct value 2 voltage 0V 10 V (0 to 9999), divide by 1000 to get the correct value 3 resistance 0 1600 	bit 0 bit 3 channel 1 bit 4 bit 7 channel 2

RMIO – universal I/O module 4 × AI, 2 × AO, 5 × relay output, 2 × SSR output

Release 18.1.2023 ver. 105

input range, channels 3, 4	5 MSB	R, W EEPROM (0×11)	Ohm (0 to 16000), divide by 10 to get the correct value 4 current 0 20 mA (0 to 2000), divide by 100 to get the correct value NB: an external resistor 125 Ohm is necessary 5 resistance 0 – 5000 Ohm (0 to 50000), divide by 10 to get the correct value	bit 0 bit 3 channel 3 bit 4 bit 7 channel 4
latched state	6 LSB	R, W EEPROM (0)	state to be catched 0 - log 1 1 - log 0	bit 0 is input 1 bit 3 is input 4
relay com	6 MSB	R, W EEPROM (0)	 0 - when no communication, relays stay in last state 1 - when no communication, relays are set to relay state values 	bit 0 is relay 1 bit 6 is relay 7
relay state	7 LSB	R, W EEPROM (0)	relays will be set on or off (according to corresponding bits) if there was no communication with module for a given time and in relay com the corresponding relay bit is set to 1	bit 0 is relay 1 bit 6 is relay 7
relay time	7 MSB	R, W EEPROM (30)	time [in seconds] since no communication, after which relays will be set in the required state	if set to 0, the function is disabled
relay start enable	8 LSB	R, W EEPROM (0)	 startup relay behaviour 0 - relays are not commanded 1 - the corresponding relay is set to its relay start value after module startup 	bit 0 is relay 1 bit 6 is relay 7
relay start	8 MSB	R, W EEPROM (0)	relays state on power-up	bit 0 is relay 1 bit 6 is relay 7
relay	9 LSB	R, W RAM	relays outputs on/off	bit 0 is relay 1 bit 6 is relay 7
latch enable	9 MSB	R, W RAM	latch function enable for each input – if set to 1 the latched value bit goes to 0 and stays so until the latched value is detected; after RESET the register is set to 0	reset the latched value register bits to 0 by changing the value of latch enable bits from 0 to 1 (=disable and enable

Release 18.1.2023 ver. 105

				latching for individual bits) bit 0 is input 1 bit 3 is input 4
channel value AO1	10 LSB 10 MSB	R, W RAM	the AO values are ranged 0000 hex-0FFF hex which is (0 dec - 4095 dec)	analogue output channels
channel value AO2	11 LSB 11 MSB	R, W RAM	0000 hex is for 0 V 0FFF hex is for 10 V	
inputs	12 LSB	R	readout of binary inputs	bit 0 is input 1 bit 3 is input 4
latched value	12 MSB	R	catched values 0 –if since latch enable the latched state has not been detected at the input 1 -if since latch enable the latched state has been detected at the input	reset of individual bits: disable and enable the corresponding bits -see register latch enable bit 0 is input 1 bit 3 is input 4
channel value AI1	13 LSB 13 MSB	R	Measured values at analogue inputs	Measured values on analogue input
channel value AI2	14 LSB 14 MSB	R		channels AI1 AI4
channel value AI3	15 LSB 15 MSB	R		
channel value AI4	16 LSB 16 MSB	R		
channels	17 LSB	R, W EEPROM (0x0F)	Measured channels log. 0 on bit means that the respective channel will not be sampled log. 1 means that the respective channel will be sampled bit 0 input channel 1 (AI1) 	not implemented yet
reserved	17 MSB	R	bit 3 input channel 4 (AI4)	
uptime	18 LSB 18 MSB 19 LSB 19 MSB	R	Time [in seconds] since module power-up or reset	LSB MSB

	I	I		
number EE values	20 LSB 20 MSB	R EEPROM	number of EEPROM writing cycles (address, baud rate, range,), just for information	Counter 0 FFFE h; no overflow, when FFFE h is reached, the counter stops
number EE cal 1	21 LSB 21 MSB	R EEPROM	number of EEPROM writing cycles - calibration	Counter 0 FFFE h; no overflow, when FFFE h is reached, the counter stops.
uptime	1000 LSB 1000 MSB 1001 LSB 1001 MSB		Uptime [s]	
SW reset	1002 LSB 1002 MSB	R, W RAM	Writing of a non-zero value executes software restart (function must be enabled in Status LSB bit 1).	
serial number	1003 LSB 1003 MSB 1004 LSB 1004 MSB		Module serial number (one-time programmable only, at production)	
serial port settings	1005 LSB	R,W EEPROM (0)	Serial port settings bits 0,1 – parity 0 none 1 even 2 odd bit 2 – 0 one stopbit 1 two stopbits	!!! The changes will become active only after module restart (the register is written immediately, but the new settings are effective after restart)
reserved	1005 MSB	R		
dip switch	1006 LSB	R	Actual value of the addressing DIP switch	
reserved	1006 MSB	R		

RMIO – universal I/O module 4 × AI, 2 × AO, 5 × relay output, 2 × SSR output Release 18.1.2023 ver. 105

Revision:

21.02.2018 ver. 100 14.01.2022 ver. 105 – stylistic adjustments, change logo 18.01.2023 ver. 105 – edited header